Algorithm Problem Solving (APS):
Sorting

Niema Moshiri
UC San Diego SPIS 2019



Introduction to Sorting

e Many algorithms require the input data to be sorted



Introduction to Sorting
e Many algorithms require the input data to be sorted
e Computational Problem: Given n “comparable” items, order them

such that the i-th element is less than or equal to the (i+1)-th element



Introduction to Sorting

e Many algorithms require the input data to be sorted

e Computational Problem: Given n “comparable” items, order them
such that the i-th element is less than or equal to the (i+1)-th element

o This is for sorting in ascending order



Introduction to Sorting

e Many algorithms require the input data to be sorted

e Computational Problem: Given n “comparable” items, order them
such that the i-th element is less than or equal to the (i+1)-th element
o This is for sorting in ascending order

o Just change “less than” to “greater than” for descending order



Introduction to Sorting

e How do we sort n items?



-~ o~ X cCut Ctrl+X

Introduction to Sorting foss O ooy cuisc

: A [7] Paste Ctrl+V

s ,
. 1 aste specia
e How do we sort n items? 2 |68 P
3 (14
4 |0 Insert 17 rows
> 22 Insert column
6 (20
7 |20 Insert cells >
8 |46
9 59 Delete rows 1-17
10 |35
136 Delete column
12193 Delete cells -
13 68
14
(6 Sort range
15 |4
16 55 Randomize range
17 115
" Insert link
+ =

Get link to this range



Introduction to Sorting
e How do we sort n items?

e No, not just clicking a button...



Introduction to Sorting
e How do we sort n items?

e No, not just clicking a button...

:~$ python3
Python 3 6 8 (default Jan 14 2019, 11:02:34)
[GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>> numbers = [93,68,14,0,22,20,20,46,59,35,36,93,68,79,4,55,15]
>>> numbers.sort()
>>> print(numbers)

[ R 4014 15 RO IQ 0835 36 846 55850 N6 TN 68 797803 Sia 3 |




Introduction to Sorting
e How do we sort n items?
e No, not just clicking a button...

e No, what’s actually happening behind the scenes?



Introduction to Sorting

e How do we sort n items?

e No, not just clicking a button...

e No, what’s actually happening behind the scenes?

® Let’s discuss some sorting algorithms!



Introduction to Sorting

e How do we sort n items?

e No, not just clicking a button...

e No, what’s actually happening behind the scenes?
® Let’s discuss some sorting algorithms!

e But first, let’s discuss time complexity using Big-O notation



Time Complexity



Describing an Algorithm

e Algorithms can be complicated, but what’s important to the user?



Describing an Algorithm
e Algorithms can be complicated, but what’s important to the user?

o Correctness: Will it give me the right answer?



Describing an Algorithm
e Algorithms can be complicated, but what’s important to the user?
o Correctness: Will it give me the right answer?

© Runtime: How long will it take to run?



Describing an Algorithm

e Algorithms can be complicated, but what’s important to the user?
o Correctness: Will it give me the right answer?
© Runtime: How long will it take to run?

e “Runtime” can be measured using the following:



Describing an Algorithm

e Algorithms can be complicated, but what’s important to the user?
o Correctness: Will it give me the right answer?
© Runtime: How long will it take to run?

e “Runtime” can be measured using the following:

o Human Time (e.g. seconds)



Describing an Algorithm

e Algorithms can be complicated, but what’s important to the user?
o Correctness: Will it give me the right answer?
© Runtime: How long will it take to run?

e “Runtime” can be measured using the following:
o Human Time (e.g. seconds)

o Computer Time (e.g. clock cycles)



Runtime is Implementation-Dependent

e An “algorithm” is a mathematical entity



Runtime is Implementation-Dependent
e An “algorithm” is a mathematical entity

o A “program” is just an implementation of an algorithm



Runtime is Implementation-Dependent
e An “algorithm” is a mathematical entity
o A “program” is just an implementation of an algorithm

e “Runtime” measures a program, not an algorithm



Runtime is Implementation-Dependent
e An “algorithm” is a mathematical entity

o A “program” is just an implementation of an algorithm
e “Runtime” measures a program, not an algorithm

o The same program run on newer hardware can run faster



Runtime is Implementation-Dependent
e An “algorithm” is a mathematical entity
o A “program” is just an implementation of an algorithm
e “Runtime” measures a program, not an algorithm
o The same program run on newer hardware can run faster

o Thus, “runtime” may not be the best way to describe an algorithm



Runtime is Implementation-Dependent
e An “algorithm” is a mathematical entity
o A “program” is just an implementation of an algorithm
e “Runtime” measures a program, not an algorithm
o The same program run on newer hardware can run faster
o Thus, “runtime” may not be the best way to describe an algorithm

o Can we describe an algorithm independently of implementation?



Time Complexity

e We can use “time complexity” to directly describe an algorithm



Time Complexity
e We can use “time complexity” to directly describe an algorithm

e Time complexity describes how an algorithm scales



Time Complexity
e We can use “time complexity” to directly describe an algorithm
e Time complexity describes how an algorithm scales

o It describes the number of operations performed by an algorithm



Time Complexity
e We can use “time complexity” to directly describe an algorithm
e Time complexity describes how an algorithm scales
o It describes the number of operations performed by an algorithm

o But with what input data?



The Best, the Worst, and the Average

e To describe an algorithm, we need to think of the input “case”



The Best, the Worst, and the Average
e To describe an algorithm, we need to think of the input “case”

o The best case is the best possible scenario for the algorithm



The Best, the Worst, and the Average
e To describe an algorithm, we need to think of the input “case”
o The best case is the best possible scenario for the algorithm

o The worst case is the worst possible scenario for the algorithm



The Best, the Worst, and the Average
e To describe an algorithm, we need to think of the input “case”
o The best case is the best possible scenario for the algorithm
o The worst case is the worst possible scenario for the algorithm

o The average case is the theoretical expectation



The Best, the Worst, and the Average

e To describe an algorithm, we need to think of the input “case”
o The best case is the best possible scenario for the algorithm
o The worst case is the worst possible scenario for the algorithm
o The average case is the theoretical expectation

e People typically mainly care about the worst case



The Best, the Worst, and the Average

e To describe an algorithm, we need to think of the input “case”
o The best case is the best possible scenario for the algorithm
o The worst case is the worst possible scenario for the algorithm
o The average case is the theoretical expectation

e People typically mainly care about the worst case

o  “Your package will arrive in around 1to 100 days”



Big-O, Big-Q, and Big-©

e We first need to pick a case (worst, best, or average)



Big-O, Big-Q, and Big-©
e We first need to pick a case (worst, best, or average)

o What do we do next to describe how our algorithm scales?



Big-O, Big-Q, and Big-©
e We first need to pick a case (worst, best, or average)

o What do we do next to describe how our algorithm scales?

o We can describe the number of operations our algorithm performs



Big-O, Big-Q, and Big-©
e We first need to pick a case (worst, best, or average)
o What do we do next to describe how our algorithm scales?
o We can describe the number of operations our algorithm performs

e Big-O: A function that is an upper bound on the number of operations



Big-O, Big-Q, and Big-©
e We first need to pick a case (worst, best, or average)

o What do we do next to describe how our algorithm scales?

o We can describe the number of operations our algorithm performs
e Big-O: A function that is an upper bound on the number of operations

e Big-Q: A function that is a lower bound on the number of operations



Big-O, Big-Q, and Big-©
e We first need to pick a case (worst, best, or average)

o What do we do next to describe how our algorithm scales?

o We can describe the number of operations our algorithm performs
e Big-O: A function that is an upper bound on the number of operations
e Big-Q: A function that is a lower bound on the number of operations

e Big-O: A function that is both an upper and lower bound



Big-O, Big-Q, and Big-©
e We first need to pick a case (worst, best, or average)

o What do we do next to describe how our algorithm scales?

o We can describe the number of operations our algorithm performs
e Big-O: A function that is an upper bound on the number of operations
e Big-Q: A function that is a lower bound on the number of operations

e Big-O: A function that is both an upper and lower bound



Example: Big-O, Big-Q, and Big-©

e Number of Operations =fln)=2n?+3n +1

A

f(n) =2n%+3n + 1




Example: Big-O, Big-Q, and Big-©

e Number of Operations =fln)=2n?+3n +1

A

g(n) = 3n? f(n) =2n%+3n + 1




e Number of Operations =fln)=2n?+3n +1

A

g(n) = 3n? f(n) =2n%+3n + 1




Example: Big-O, Big-Q, and Big-©

e Number of Operations =fln)=2n?+3n +1

A

g(n) = 3n? f(n) =2n%+3n + 1

h(n) = n?




e Number of Operations =fln)=2n?+3n +1

A

g(n) = 3n? f(n) =2n%+3n + 1
h(n) = n?
>
n



Example: Big-O, Big-Q, and Big-©

e Number of Operations =fln)=2n?+3n +1

fin) is both O(n?) and Q(n?)
therefore...
fin) is ©(n?)




Finding the Big-O Time Complexity

e Imagine we have a function f({n) denoting the number of operations



Finding the Big-O Time Complexity
e Imagine we have a function f({n) denoting the number of operations

o First, drop all lower terms of n in the addition



Finding the Big-O Time Complexity
e |magine we have a function f(n) denoting the number of operations
o First, drop all lower terms of n in the addition

o Second, drop all constant coefficients



Finding the Big-O Time Complexity

e Imagine we have a function f({n) denoting the number of operations
o First, drop all lower terms of n in the addition
o Second, drop all constant coefficients

e Example: fln)=5nlog n+ 2n + 27



Finding the Big-O Time Complexity

e Imagine we have a function f({n) denoting the number of operations
o First, drop all lower terms of n in the addition
o Second, drop all constant coefficients

e Example: fln)=5nlog n+ 2n + 27

o bnlogn+2r+24=>5nlogn



Finding the Big-O Time Complexity

e Imagine we have a function f({n) denoting the number of operations
o First, drop all lower terms of n in the addition
o Second, drop all constant coefficients

e Example: fln)=5nlog n+ 2n + 27
o bnlogn+2r+24=>5nlogn

o 5Snlogn=nlogn=0(nlogn)



Selection Sort



Selection Sort

Algorithm selection_sort(X):
output «— empty list
Repeat |X| times:
y «— smallest item in X
Remove y from X
Add y to output

Return output



Selection Sort

/

25

42




Selection Sort

/

25

42




Selection Sort

/

25

42




Selection Sort

/

25

42




Selection Sort

/

25

42




Selection Sort

/

25

42




Selection Sort

/

25

42




Selection Sort

7

25

42




Selection Sort

7

25

42




Selection Sort

wd

25

42




Selection Sort

wd

25

42




Selection Sort

wd

25

42

25




Selection Sort

wd

42

25




Selection Sort

wd

42

25




Selection Sort

wd

42

25

42




Selection Sort

wd

25

42




Selection Sort

wd

25 8 42

Can we do it in-place?

-9

0 / 25

42




Selection Sort (In-Place)

42




Selection Sort (In-Place)

42




Selection Sort (In-Place)

42




Selection Sort (In-Place)

L AN,

7

25

0

42




Selection Sort (In-Place)

25

42




Selection Sort (In-Place)

25

42




Selection Sort (In-Place)

25

42




Selection Sort (In-Place)

£

25

0

42




Selection Sort (In-Place)

25

42




Selection Sort (In-Place)

25

42




Selection Sort (In-Place)

25

42




Selection Sort (In-Place)

A

-9 0 25 42 7




Selection Sort (In-Place)

42

25




Selection Sort (In-Place)

42

25




Selection Sort (In-Place)

42

25




Selection Sort (In-Place)




Selection Sort (In-Place)

25

42




Selection Sort (In-Place)

25

42




Selection Sort (In-Place)

25

42




Selection Sort (In-Place)

25




Selection Sort (In-Place)

25

42




Selection Sort (In-Place)

What type of algorithm is this?




Selection Sort: Worst-Case Time Complexity



Selection Sort: Worst-Case Time Complexity

® [or each of our n iterations:



Selection Sort: Worst-Case Time Complexity
e [or each of our n iterations:

o Find the smallest remaining item



Selection Sort: Worst-Case Time Complexity
e For each of our n iterations:
o Find the smallest remaining item

m Inthe i-th iteration (O-based counting), we check n - i items



Selection Sort: Worst-Case Time Complexity
e [or each of our n iterations:
o Find the smallest remaining item
m Inthe i-th iteration (O-based counting), we check n - i items

e Total number of operations=n+ (n-1)+(n-2)+..+3+2+1



Selection Sort: Worst-Case Time Complexity
e For each of our n iterations:
o Find the smallest remaining item
m Inthe i-th iteration (O-based counting), we check n - i items
e Total number of operations=n+ (n-1)+(n-2)+..+3+2+1

o This is the sum of the integers from 1to n, which is n(n+1)/2



Selection Sort: Worst-Case Time Complexity
e For each of our n iterations:
o Find the smallest remaining item
m Inthe i-th iteration (O-based counting), we check n - i items
e Total number of operations=n+ (n-1)+(n-2)+..+3+2+1
o This is the sum of the integers from 1to n, which is n(n+1)/2

o n(n+1)/2 =n?+ n =+ 0(n?



Selection Sort: Worst-Case Time Complexity
e [or each of our n iterations:

o Find the smallest remaining item

Can we do better?

otal number of operations =n
o This is the sum of the integers from 1to n, which is n(n+1)/2

o n(n+1)/2 =n?+ n =+ 0(n?




Merge Sort



Merge Sort

Algorithm merge_sort(X):
If |X| only has 1 item:
Return |X|
left «— merge_sort(left half of X)
right «— merge_sort(right half of X)

Return the result of merging left and right



Merge Sort

25

42

12




Merge Sort

25

42

12




Merge Sort

25

42

12

25

42

12




Merge Sort

25

42

12

25

42

12




Merge Sort

25

42

12

25

25

42

12

42

12




Merge Sort

25

42

12

25

25

42

12

42

12




Merge Sort

-9 7 25142 5 2 12
9 0 25 42 5| -2 12
-9 25 42 2112
V'
-9 0 25 | 42 5 | -2 12




Merge Sort

7 125|142 5

-2

12



[/ 25|42 5 -2 12

0

-9

T
o
n
Q
o)
| -
Q
=

12

-2

42 | 5

12

12

VAR VAR VA Ve

12

-2

42

-2 5 12 42

25



[/ 25|42 5 -2 12

0

-9

T
o
n
Q
o)
| -
Q
=

12

-2

42 | 5

12

12

VAR VAR VA Ve

12

-2

42

-2 5 12 42

25

12 | 25 42

S5 7

0

-2



Merge Sort

9 0 7 25142 5 -2 |12
-9 0 7 25 42 5 | -2 112
-9 7 | 25 42 | 5 -2 112
)& O Ao
-9 7 | 25 5 142 -2 12
T~~~
-9 0 7 25 -2 5 12 42
9 -2 0 5 7 |12 | 25 42




Merging Two Sorted Lists

Algorithm merge(X,Y):
output «— empty list; i,j <« ©
While i < |X| and j < |Y]:
If X[1i] < Y[]]:
Add X[i] to output and increment i
Else:
Add Y[j] to output and increment j
Add remaining items to output

Return output



Merging Two Sorted Lists

25

12




Merging Two Sorted Lists

25

12




Merging Two Sorted Lists

25

12




Merging Two Sorted Lists

25

12




Merging Two Sorted Lists

b 4
9 0 7 25 -2 12
9 2




Merging Two Sorted Lists

;
9 0 7 25 -2
9 -2

12




Merging Two Sorted Lists

9 0 7 25 -2
9 -2 0

12




Merging Two Sorted Lists

9 0 7 25 -2
9 -2 0

12




Merging Two Sorted Lists

9 0 7 25 -2
9 -2 0

12




Merging Two Sorted Lists

v v
9 0 7 25 2 5 12
9 2 0




Merging Two Sorted Lists

v v
9 0 7 25 2 5 12
9 2 0




Merging Two Sorted Lists

v v
9 0 7 25 2 5 12
9 2 0




Merging Two Sorted Lists

v v
9 0 7 25 2 5 12
9 2 0 12




Merging Two Sorted Lists

9 0 7 25 -2
9 -2 0 12

12




Merging Two Sorted Lists

12

9 0 7 25 -2 5
9 -2 0 12 25




Merging Two Sorted Lists

12

9 0 7 25 -2 5
9 -2 0 12 25




Merge Sort: Worst-Case Time Complexity



Merge Sort: Worst-Case Time Complexity

e For each of our log,n levels of merging:



Merge Sort: Worst-Case Time Complexity
e For each of our log,n levels of merging:

o Merge pairs of sorted lists (n items total)



Merge Sort: Worst-Case Time Complexity
e For each of our log,n levels of merging:
o Merge pairs of sorted lists (n items total)

m In each level of merging, each item is checked only once



Merge Sort: Worst-Case Time Complexity
e For each of our log,n levels of merging:
o Merge pairs of sorted lists (n items total)
m In each level of merging, each item is checked only once

e Total number of operations=n+n+ ..+ n (once per row of merging)



Merge Sort: Worst-Case Time Complexity
e For each of our log,n levels of merging:
o Merge pairs of sorted lists (n items total)
m In each level of merging, each item is checked only once
e Total number of operations=n+n+ ..+ n (once per row of merging)

o We have log,n rows of merging, so n log,n total, x2 for dividing



Merge Sort: Worst-Case Time Complexity
e For each of our log,n levels of merging:
o Merge pairs of sorted lists (n items total)
m In each level of merging, each item is checked only once
e Total number of operations=n+n+ ..+ n (once per row of merging)
o We have log,n rows of merging, so n log,n total, x2 for dividing
o 2nlog,n = O(n log n)



Merge Sort: Worst-Case Time Complexity
e For each of our log,n levels of merging:

o Merge pairs of sorted lists (n items total)

Can we do better?

otal'number of operations=n+n n(once perrow of merging
o We have log,n rows of merging, so n log,n total, x2 for dividing

o 2nlog,n = O(n log n)




Merge Sort: Worst-Case Time Complexity

e For each of our log,n levels of merging:

Probably not!

otal'number of operations=n+n n(once perrow of merging
o We have log,n rows of merging, so n log,n total, x2 for dividing

o 2nlog,n = O(n log n)



