Algorithm Problem Solving (APS): Sorting

Niema Moshiri UC San Diego SPIS 2019

• Many algorithms require the input data to be sorted

- Many algorithms require the input data to be sorted
- **Computational Problem:** Given *n* "comparable" items, order them

such that the *i*-th element is less than or equal to the (*i*+1)-th element

- Many algorithms require the input data to be sorted
- **Computational Problem:** Given *n* "comparable" items, order them

such that the *i*-th element is less than or equal to the (*i*+1)-th element

• This is for sorting in *ascending* order

- Many algorithms require the input data to be sorted
- **Computational Problem:** Given *n* "comparable" items, order them

such that the *i*-th element is less than or equal to the (*i*+1)-th element

- This is for sorting in *ascending* order
- Just change "less than" to "greater than" for *descending* order

• How do we sort *n* items?

• How do we sort *n* items?

F		ē	ж	Cut	Ctrl+X
fx	93		D	Сору	Ctrl+C
		А	Ĉ	Paste	Ctrl+V
1	93			Deste en esiel	
2	68			Paste special	•
3	14				
4	0			Insert 17 rows	
5	22			Insert column	
6	20			N 142	
7	20			Insert cells	*
8	46				
9	59			Delete rows 1 - 17	
10	35			Delete celumn	
11	36			Delete column	
12	93			Delete cells	►
13	68				
14	79			Sort range	
15	4			g	
16	55			Randomize range	
17	15				
10				Insert link	
	+	≡		Get link to this rang	ge

- How do we sort *n* items?
- No, not just clicking a button...

- How do we sort *n* items?
- No, not just clicking a button...

```
niema@DESKTOP-G7N2912:~$ python3
Python 3.6.8 (default, Jan 14 2019, 11:02:34)
[GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> numbers = [93,68,14,0,22,20,20,46,59,35,36,93,68,79,4,55,15]
>>> numbers.sort()
>>> print(numbers)
[0, 4, 14, 15, 20, 20, 22, 35, 36, 46, 55, 59, 68, 68, 79, 93, 93]
```

- How do we sort *n* items?
- No, not just clicking a button...
- No, what's *actually* happening behind the scenes?

- How do we sort *n* items?
- No, not just clicking a button...
- No, what's *actually* happening behind the scenes?
- Let's discuss some sorting algorithms!

- How do we sort *n* items?
- No, not just clicking a button...
- No, what's *actually* happening behind the scenes?
- Let's discuss some sorting algorithms!
- But first, let's discuss time complexity using Big-O notation

• Algorithms can be complicated, but what's important to the user?

- Algorithms can be complicated, but what's important to the user?
 - **Correctness:** Will it give me the right answer?

- Algorithms can be complicated, but what's important to the user?
 - **Correctness:** Will it give me the right answer?
 - **Runtime:** How long will it take to run?

- Algorithms can be complicated, but what's important to the user?
 - **Correctness:** Will it give me the right answer?
 - **Runtime:** How long will it take to run?
- "Runtime" can be measured using the following:

- Algorithms can be complicated, but what's important to the user?
 - **Correctness:** Will it give me the right answer?
 - **Runtime:** How long will it take to run?
- "Runtime" can be measured using the following:
 - Human Time (e.g. seconds)

- Algorithms can be complicated, but what's important to the user?
 - **Correctness:** Will it give me the right answer?
 - **Runtime:** How long will it take to run?
- "Runtime" can be measured using the following:
 - Human Time (e.g. seconds)
 - Computer Time (e.g. clock cycles)

• An "algorithm" is a mathematical entity

- An "algorithm" is a mathematical entity
 - A "program" is just an *implementation* of an algorithm

- An "algorithm" is a mathematical entity
 - A "program" is just an *implementation* of an algorithm
- "Runtime" measures a *program*, not an *algorithm*

- An "algorithm" is a mathematical entity
 - A "program" is just an *implementation* of an algorithm
- "Runtime" measures a *program*, not an *algorithm*
 - The same *program* run on newer hardware can run faster

- An "algorithm" is a mathematical entity
 - A "program" is just an *implementation* of an algorithm
- "Runtime" measures a *program*, not an *algorithm*
 - The same *program* run on newer hardware can run faster
 - Thus, "runtime" may not be the best way to describe an algorithm

- An "algorithm" is a mathematical entity
 - A "program" is just an *implementation* of an algorithm
- "Runtime" measures a *program*, not an *algorithm*
 - The same *program* run on newer hardware can run faster
 - Thus, "runtime" may not be the best way to describe an algorithm
 - Can we describe an algorithm independently of implementation?

• We can use "time complexity" to directly describe an algorithm

- We can use "time complexity" to directly describe an algorithm
- Time complexity describes how an algorithm *scales*

- We can use "time complexity" to directly describe an algorithm
- Time complexity describes how an algorithm *scales*
 - It describes the number of operations performed by an algorithm

- We can use "time complexity" to directly describe an algorithm
- Time complexity describes how an algorithm *scales*
 - It describes the number of operations performed by an algorithm
 - But with what input data?

• To describe an algorithm, we need to think of the input "case"

- To describe an algorithm, we need to think of the input "case"
 - The **best case** is the best possible scenario for the algorithm

- To describe an algorithm, we need to think of the input "case"
 - The **best case** is the best possible scenario for the algorithm
 - The **worst case** is the worst possible scenario for the algorithm

- To describe an algorithm, we need to think of the input "case"
 - The **best case** is the best possible scenario for the algorithm
 - The **worst case** is the worst possible scenario for the algorithm
 - The **average case** is the theoretical expectation

- To describe an algorithm, we need to think of the input "case"
 - The **best case** is the best possible scenario for the algorithm
 - The **worst case** is the worst possible scenario for the algorithm
 - The **average case** is the theoretical expectation
- People typically mainly care about the worst case

- To describe an algorithm, we need to think of the input "case"
 - The **best case** is the best possible scenario for the algorithm
 - The **worst case** is the worst possible scenario for the algorithm
 - The **average case** is the theoretical expectation
- People typically mainly care about the worst case
 - "Your package will arrive in around 1 to 100 days"

Big-O, Big- Ω , and Big- Θ

• We first need to pick a case (worst, best, or average)
- We first need to pick a case (worst, best, or average)
 - What do we do next to describe how our algorithm scales?

- We first need to pick a case (worst, best, or average)
 - What do we do next to describe how our algorithm scales?
 - We can describe the number of operations our algorithm performs

- We first need to pick a case (worst, best, or average)
 - What do we do next to describe how our algorithm scales?
 - We can describe the number of operations our algorithm performs
- **Big-O:** A function that is an *upper* bound on the number of operations

- We first need to pick a case (worst, best, or average)
 - What do we do next to describe how our algorithm scales?
 - We can describe the number of operations our algorithm performs
- **Big-O:** A function that is an *upper* bound on the number of operations
- **Big-Ω:** A function that is a *lower* bound on the number of operations

- We first need to pick a case (worst, best, or average)
 - What do we do next to describe how our algorithm scales?
 - We can describe the number of operations our algorithm performs
- **Big-O:** A function that is an *upper* bound on the number of operations
- **Big-Ω:** A function that is a *lower* bound on the number of operations
- **Big-O:** A function that is both an upper *and* lower bound

- We first need to pick a case (worst, best, or average)
 - What do we do next to describe how our algorithm scales?
 - We can describe the number of operations our algorithm performs
- **Big-O:** A function that is an *upper* bound on the number of operations
- **Big-Ω:** A function that is a *lower* bound on the number of operations
- **Big-O:** A function that is both an upper *and* lower bound

Example: Big-O, Big- Ω , and Big- Θ

• Number of Operations = $f(n) = 2n^2 + 3n + 1$

Example: Big-O, Big- Ω , and Big- Θ

• Number of Operations = $f(n) = 2n^2 + 3n + 1$

f(*n*) is O(*n*²)

• Number of Operations = $f(n) = 2n^2 + 3n + 1$

Ex

Example: Big-O, Big- Ω , and Big- Θ

• Number of Operations = $f(n) = 2n^2 + 3n + 1$

f(n) is $\Omega(n^2)$

• Number of Operations = $f(n) = 2n^2 + 3n + 1$

Ex

Example: Big-O, Big- Ω , and Big- Θ

• Number of Operations = $f(n) = 2n^2 + 3n + 1$

• Imagine we have a function *f*(*n*) denoting the number of operations

- Imagine we have a function *f*(*n*) denoting the number of operations
 - First, drop all lower terms of *n* in the addition

- Imagine we have a function *f*(*n*) denoting the number of operations
 - First, drop all lower terms of *n* in the addition
 - Second, drop all constant coefficients

- Imagine we have a function *f*(*n*) denoting the number of operations
 - First, drop all lower terms of *n* in the addition
 - Second, drop all constant coefficients
- Example: *f*(*n*) = 5*n* log *n* + 2*n* + 27

- Imagine we have a function *f*(*n*) denoting the number of operations
 - First, drop all lower terms of *n* in the addition
 - Second, drop all constant coefficients
- Example: *f*(*n*) = 5*n* log *n* + 2*n* + 27
 - 5n log n + 2n + 27 → 5n log n

- Imagine we have a function *f*(*n*) denoting the number of operations
 - First, drop all lower terms of *n* in the addition
 - Second, drop all constant coefficients
- Example: *f*(*n*) = 5*n* log *n* + 2*n* + 27
 - 5n log n + 2n + 27 → 5n log n
 - 5n log n → n log n → O(n log n)

```
Algorithm selection_sort(X):
output ← empty list
Repeat |X| times:
     \mathbf{y} \leftarrow \text{smallest item in } \mathbf{X}
     Remove y from X
     Add y to output
Return output
```


	1	

	1	

\frown		
-9		
Ŭ		

\frown		
-9		
Ŭ		

_9		
0		

-9	0		

-9	0		

-9	0		

-9	0	7	

-9	0	7	

-9	0	7	

|--|

|--|

|--|

-9	0	7	25	42
----	---	---	----	----

-9	0	7	25	42
----	---	---	----	----
Selection Sort

|--|

7	25	0	42	-9
---	----	---	----	----

What type of algorithm is this?-3012042

• For each of our *n* iterations:

- For each of our *n* iterations:
 - Find the smallest remaining item

- For each of our *n* iterations:
 - Find the smallest remaining item
 - In the *i*-th iteration (0-based counting), we check *n i* items

- For each of our *n* iterations:
 - Find the smallest remaining item
 - In the *i*-th iteration (0-based counting), we check *n i* items
- Total number of operations = n + (n-1) + (n-2) + ... + 3 + 2 + 1

- For each of our *n* iterations:
 - Find the smallest remaining item
 - In the *i*-th iteration (0-based counting), we check *n i* items
- Total number of operations = n + (n-1) + (n-2) + ... + 3 + 2 + 1
 - This is the sum of the integers from 1 to *n*, which is n(n+1)/2

- For each of our *n* iterations:
 - Find the smallest remaining item
 - In the *i*-th iteration (0-based counting), we check *n i* items
- Total number of operations = n + (n-1) + (n-2) + ... + 3 + 2 + 1
 - This is the sum of the integers from 1 to *n*, which is n(n+1)/2

$$\circ \quad n(n+1)/2 = n^2 + n \rightarrow \mathbf{O}(n^2)$$

- For each of our *n* iterations:
 - Find the smallest remaining item

Can we do better?

- Total number of operations = *n* + (*n*-1) + (*n*-2) + ... + 3 + 2 + 1
 - This is the sum of the integers from 1 to *n*, which is n(n+1)/2

$$\circ \quad n(n+1)/2 = n^2 + n \rightarrow \mathbf{O}(n^2)$$

```
Algorithm merge sort(X):
If |X| only has 1 item:
    Return |X|
left ← merge sort(left half of X)
right ← merge sort(right half of X)
Return the result of merging left and right
```



```
Algorithm merge(X,Y):
```

```
output ← empty list; i,j ← 0
While \mathbf{i} < |\mathbf{X}| and \mathbf{j} < |\mathbf{Y}|:
    If X[i] < Y[j]:
         Add X[i] to output and increment i
    Else:
         Add Y[j] to output and increment j
Add remaining items to output
Return output
```


Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

• For each of our $\log_2 n$ levels of merging:

- For each of our $\log_2 n$ levels of merging:
 - Merge pairs of sorted lists (*n* items total)

- For each of our $\log_2 n$ levels of merging:
 - Merge pairs of sorted lists (*n* items total)
 - In each level of merging, each item is checked only once

- For each of our $\log_2 n$ levels of merging:
 - Merge pairs of sorted lists (*n* items total)
 - In each level of merging, each item is checked only once
- Total number of operations = n + n + ... + n (once per row of merging)

- For each of our $\log_2 n$ levels of merging:
 - Merge pairs of sorted lists (*n* items total)
 - In each level of merging, each item is checked only once
- Total number of operations = n + n + ... + n (once per row of merging)
 - We have $\log_2 n$ rows of merging, so $n \log_2 n$ total, ×2 for dividing

- For each of our $\log_2 n$ levels of merging:
 - Merge pairs of sorted lists (*n* items total)
 - In each level of merging, each item is checked only once
- Total number of operations = n + n + ... + n (once per row of merging)
 - We have $\log_2 n$ rows of merging, so $n \log_2 n$ total, ×2 for dividing
 - $2n \log_2 n \rightarrow O(n \log n)$

- For each of our $\log_2 n$ levels of merging:
 - Merge pairs of sorted lists (*n* items total)

Can we do better?

- Total number of operations = n + n + ... + n (once per row of merging)
 - We have $\log_2 n$ rows of merging, so $n \log_2 n$ total, ×2 for dividing
 - $2n \log_2 n \rightarrow O(n \log n)$

• For each of our $\log_2 n$ levels of merging:

Probably not!

can we do beller:

- Total number of operations = n + n + ... + n (once per row of merging)
 - We have $\log_2 n$ rows of merging, so $n \log_2 n$ total, ×2 for dividing
 - $2n \log_2 n \rightarrow O(n \log n)$