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Introduction to Sorting

● Many algorithms require the input data to be sorted

● Computational Problem: Given n “comparable” items, order them 

such that the i-th element is less than or equal to the (i+1)-th element

○ This is for sorting in ascending order

○ Just change “less than” to “greater than” for descending order
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Introduction to Sorting

● How do we sort n items?

● No, not just clicking a button...

● No, what’s actually happening behind the scenes?

● Let’s discuss some sorting algorithms!

● But first, let’s discuss time complexity using Big-O notation



Time Complexity
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Describing an Algorithm

● Algorithms can be complicated, but what’s important to the user?

○ Correctness: Will it give me the right answer?

○ Runtime: How long will it take to run?

● “Runtime” can be measured using the following:

○ Human Time (e.g. seconds)

○ Computer Time (e.g. clock cycles)
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Runtime is Implementation-Dependent

● An “algorithm” is a mathematical entity

○ A “program” is just an implementation of an algorithm

● “Runtime” measures a program, not an algorithm

○ The same program run on newer hardware can run faster

○ Thus, “runtime” may not be the best way to describe an algorithm

○ Can we describe an algorithm independently of implementation?
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Time Complexity

● We can use “time complexity” to directly describe an algorithm

● Time complexity describes how an algorithm scales

○ It describes the number of operations performed by an algorithm

○ But with what input data?
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The Best, the Worst, and the Average

● To describe an algorithm, we need to think of the input “case”

○ The best case is the best possible scenario for the algorithm

○ The worst case is the worst possible scenario for the algorithm

○ The average case is the theoretical expectation

● People typically mainly care about the worst case

○ “Your package will arrive in around 1 to 100 days”
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Example: Big-O, Big-Ω, and Big-Ɵ

● Number of Operations = f(n) = 2n2 + 3n + 1

n

g(n) = 3n2 f(n) = 2n2 + 3n + 1

h(n) = n2

f(n) is both O(n2) and Ω(n2)
therefore…
f(n) is Ɵ(n2)



Finding the Big-O Time Complexity

● Imagine we have a function f(n) denoting the number of operations



Finding the Big-O Time Complexity

● Imagine we have a function f(n) denoting the number of operations

○ First, drop all lower terms of n in the addition



Finding the Big-O Time Complexity

● Imagine we have a function f(n) denoting the number of operations

○ First, drop all lower terms of n in the addition

○ Second, drop all constant coefficients



Finding the Big-O Time Complexity

● Imagine we have a function f(n) denoting the number of operations

○ First, drop all lower terms of n in the addition

○ Second, drop all constant coefficients

● Example: f(n) = 5n log n + 2n + 27



Finding the Big-O Time Complexity

● Imagine we have a function f(n) denoting the number of operations

○ First, drop all lower terms of n in the addition

○ Second, drop all constant coefficients

● Example: f(n) = 5n log n + 2n + 27

○ 5n log n + 2n + 27 → 5n log n



Finding the Big-O Time Complexity

● Imagine we have a function f(n) denoting the number of operations

○ First, drop all lower terms of n in the addition

○ Second, drop all constant coefficients

● Example: f(n) = 5n log n + 2n + 27

○ 5n log n + 2n + 27 → 5n log n

○ 5n log n → n log n → O(n log n)
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Selection Sort

Algorithm selection_sort(X):

    output ← empty list

    Repeat |X| times:

        y ← smallest item in X

        Remove y from X

        Add y to output

    Return output
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Selection Sort

7 25 0 42 -9

-9 0 7 25 42

Can we do it in-place?
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Selection Sort (In-Place)

-9 0 7 25 42
What type of algorithm is this?
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● For each of our n iterations:

○ Find the smallest remaining item

■ In the i-th iteration (0-based counting), we check n - i items

● Total number of operations = n + (n-1) + (n-2) + … + 3 + 2 + 1

○ This is the sum of the integers from 1 to n, which is n(n+1)/2

○ n(n+1)/2 = n2 + n → O(n2)

Can we do better?
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Merge Sort

Algorithm merge_sort(X):

    If |X| only has 1 item:

        Return |X|

    left ← merge_sort(left half of X)

    right ← merge_sort(right half of X)

    Return the result of merging left and right
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-9 0 7 25 42 5 -2 12
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-9 0 7 25 42 5 -2 12

-9 0 7 25 5 42 -2 12

-9 0 7 25 -2 5 12 42

-9 -2 0 5 7 12 25 42

What type of algorithm is this?



Merging Two Sorted Lists
Algorithm merge(X,Y):

    output ← empty list;   i,j ← 0

    While i < |X| and j < |Y|:

        If X[i] < Y[j]:

            Add X[i] to output and increment i

        Else:

            Add Y[j] to output and increment j

    Add remaining items to output

    Return output
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Merge Sort: Worst-Case Time Complexity

● For each of our log2n levels of merging:

○ Merge pairs of sorted lists (n items total)

■ In each level of merging, each item is checked only once

● Total number of operations = n + n + … + n (once per row of merging)

○ We have log2n rows of merging, so n log2n total, ×2 for dividing

○ 2n log2n → O(n log n)

Can we do better?
Probably not!


