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Introduction to Sorting

e Many algorithms require the input data to be sorted

e Computational Problem: Given n “comparable” items, order them
such that the i-th element is less than or equal to the (i+1)-th element
o This is for sorting in ascending order

o Just change “less than” to “greater than” for descending order
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Introduction to Sorting
e How do we sort n items?

e No, not just clicking a button...

:~$ python3
Python 3 6 8 (default Jan 14 2019, 11:02:34)
[GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>> numbers = [93,68,14,0,22,20,20,46,59,35,36,93,68,79,4,55,15]
>>> numbers.sort()
>>> print(numbers)

[ R 4014 15 RO IQ 0835 36 846 55850 N6 TN 68 797803 Sia 3 |
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Introduction to Sorting

e How do we sort n items?

e No, not just clicking a button...

e No, what’s actually happening behind the scenes?
® Let’s discuss some sorting algorithms!

e But first, let’s discuss time complexity using Big-O notation



Time Complexity
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Describing an Algorithm

e Algorithms can be complicated, but what’s important to the user?
o Correctness: Will it give me the right answer?
© Runtime: How long will it take to run?

e “Runtime” can be measured using the following:
o Human Time (e.g. seconds)

o Computer Time (e.g. clock cycles)
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Runtime is Implementation-Dependent
e An “algorithm” is a mathematical entity
o A “program” is just an implementation of an algorithm
e “Runtime” measures a program, not an algorithm
o The same program run on newer hardware can run faster
o Thus, “runtime” may not be the best way to describe an algorithm

o Can we describe an algorithm independently of implementation?
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Time Complexity
e We can use “time complexity” to directly describe an algorithm
e Time complexity describes how an algorithm scales
o It describes the number of operations performed by an algorithm

o But with what input data?



The Best, the Worst, and the Average

e To describe an algorithm, we need to think of the input “case”



The Best, the Worst, and the Average
e To describe an algorithm, we need to think of the input “case”

o The best case is the best possible scenario for the algorithm



The Best, the Worst, and the Average
e To describe an algorithm, we need to think of the input “case”
o The best case is the best possible scenario for the algorithm

o The worst case is the worst possible scenario for the algorithm



The Best, the Worst, and the Average
e To describe an algorithm, we need to think of the input “case”
o The best case is the best possible scenario for the algorithm
o The worst case is the worst possible scenario for the algorithm

o The average case is the theoretical expectation



The Best, the Worst, and the Average

e To describe an algorithm, we need to think of the input “case”
o The best case is the best possible scenario for the algorithm
o The worst case is the worst possible scenario for the algorithm
o The average case is the theoretical expectation

e People typically mainly care about the worst case



The Best, the Worst, and the Average

e To describe an algorithm, we need to think of the input “case”
o The best case is the best possible scenario for the algorithm
o The worst case is the worst possible scenario for the algorithm
o The average case is the theoretical expectation

e People typically mainly care about the worst case

o  “Your package will arrive in around 1to 100 days”
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e Number of Operations =fln)=2n?+3n +1

A

g(n) = 3n? f(n) =2n%+3n + 1
h(n) = n?
>
n



Example: Big-O, Big-Q, and Big-©

e Number of Operations =fln)=2n?+3n +1

fin) is both O(n?) and Q(n?)
therefore...
fin) is ©(n?)




Finding the Big-O Time Complexity

e Imagine we have a function f({n) denoting the number of operations



Finding the Big-O Time Complexity
e Imagine we have a function f({n) denoting the number of operations

o First, drop all lower terms of n in the addition



Finding the Big-O Time Complexity
e |magine we have a function f(n) denoting the number of operations
o First, drop all lower terms of n in the addition

o Second, drop all constant coefficients



Finding the Big-O Time Complexity

e Imagine we have a function f({n) denoting the number of operations
o First, drop all lower terms of n in the addition
o Second, drop all constant coefficients

e Example: fln)=5nlog n+ 2n + 27



Finding the Big-O Time Complexity

e Imagine we have a function f({n) denoting the number of operations
o First, drop all lower terms of n in the addition
o Second, drop all constant coefficients

e Example: fln)=5nlog n+ 2n + 27

o bnlogn+2r+24=>5nlogn



Finding the Big-O Time Complexity

e Imagine we have a function f({n) denoting the number of operations
o First, drop all lower terms of n in the addition
o Second, drop all constant coefficients

e Example: fln)=5nlog n+ 2n + 27
o bnlogn+2r+24=>5nlogn

o 5Snlogn=nlogn=0(nlogn)
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Selection Sort

Algorithm selection_sort(X):
output «— empty list
Repeat |X| times:
y «— smallest item in X
Remove y from X
Add y to output

Return output
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Selection Sort (In-Place)

What type of algorithm is this?
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Selection Sort: Worst-Case Time Complexity
e [or each of our n iterations:

o Find the smallest remaining item

Can we do better?

otal number of operations =n
o This is the sum of the integers from 1to n, which is n(n+1)/2

o n(n+1)/2 =n?+ n =+ 0(n?
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Merge Sort

Algorithm merge_sort(X):
If |X| only has 1 item:
Return |X|
left «— merge_sort(left half of X)
right «— merge_sort(right half of X)

Return the result of merging left and right



Merge Sort

25

42

12




Merge Sort

25

42

12




Merge Sort

25

42

12

25

42

12




Merge Sort

25

42

12

25

42

12




Merge Sort

25

42

12

25

25

42

12

42

12




Merge Sort

25

42

12

25

25

42

12

42

12




Merge Sort

-9 7 25142 5 2 12
9 0 25 42 5| -2 12
-9 25 42 2112
V'
-9 0 25 | 42 5 | -2 12




Merge Sort

7 125|142 5

-2

12



[/ 25|42 5 -2 12

0

-9

T
o
n
Q
o)
| -
Q
=

12

-2

42 | 5

12

12

VAR VAR VA Ve

12

-2

42

-2 5 12 42

25



[/ 25|42 5 -2 12

0

-9

T
o
n
Q
o)
| -
Q
=

12

-2

42 | 5

12

12

VAR VAR VA Ve

12

-2

42

-2 5 12 42

25

12 | 25 42

S5 7

0

-2



Merge Sort

9 0 7 25142 5 -2 |12
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T~~~
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Merging Two Sorted Lists

Algorithm merge(X,Y):
output «— empty list; i,j <« ©
While i < |X| and j < |Y]:
If X[1i] < Y[]]:
Add X[i] to output and increment i
Else:
Add Y[j] to output and increment j
Add remaining items to output

Return output
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Merge Sort: Worst-Case Time Complexity

e For each of our log,n levels of merging:

Probably not!

otal'number of operations=n+n n(once perrow of merging
o We have log,n rows of merging, so n log,n total, x2 for dividing

o 2nlog,n = O(n log n)



