Algorithm Problem Solving (APS): Sorting

Niema Moshiri
UC San Diego SPIS 2019

Introduction to Sorting

- Many algorithms require the input data to be sorted

Introduction to Sorting

- Many algorithms require the input data to be sorted
- Computational Problem: Given n "comparable" items, order them such that the i-th element is less than or equal to the $(i+1)$-th element

Introduction to Sorting

- Many algorithms require the input data to be sorted
- Computational Problem: Given n "comparable" items, order them such that the i-th element is less than or equal to the $(i+1)$-th element
- This is for sorting in ascending order

Introduction to Sorting

- Many algorithms require the input data to be sorted
- Computational Problem: Given n "comparable" items, order them such that the i-th element is less than or equal to the $(i+1)$-th element
- This is for sorting in ascending order
- Just change "less than" to "greater than" for descending order

Introduction to Sorting

- How do we sort n items?

Introduction to Sorting

- How do we sort n items?

Introduction to Sorting

- How do we sort n items?
- No, not just clicking a button...

Introduction to Sorting

- How do we sort n items?
- No, not just clicking a button...

```
niema@DESKTOP-G7N2912:~$ python3
Python 3.6.8 (default, Jan 14 2019, 11:02:34)
[GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> numbers = [93,68,14,0,22, 20, 20,46,59, 35,36,93,68,79,4,55,15]
>>> numbers.sort()
>>> print(numbers)
[0, 4, 14, 15, 20, 20, 22, 35, 36, 46, 55, 59, 68, 68, 79, 93, 93]
```


Introduction to Sorting

- How do we sort n items?
- No, not just clicking a button...
- No, what's actually happening behind the scenes?

Introduction to Sorting

- How do we sort n items?
- No, not just clicking a button...
- No, what's actually happening behind the scenes?
- Let's discuss some sorting algorithms!

Introduction to Sorting

- How do we sort n items?
- No, not just clicking a button...
- No, what's actually happening behind the scenes?
- Let's discuss some sorting algorithms!
- But first, let's discuss time complexity using Big-O notation

Time Complexity

Describing an Algorithm

- Algorithms can be complicated, but what's important to the user?

Describing an Algorithm

- Algorithms can be complicated, but what's important to the user?
- Correctness: Will it give me the right answer?

Describing an Algorithm

- Algorithms can be complicated, but what's important to the user?
- Correctness: Will it give me the right answer?
- Runtime: How long will it take to run?

Describing an Algorithm

- Algorithms can be complicated, but what's important to the user?
- Correctness: Will it give me the right answer?
- Runtime: How long will it take to run?
- "Runtime" can be measured using the following:

Describing an Algorithm

- Algorithms can be complicated, but what's important to the user?
- Correctness: Will it give me the right answer?
- Runtime: How long will it take to run?
- "Runtime" can be measured using the following:
- Human Time (e.g. seconds)

Describing an Algorithm

- Algorithms can be complicated, but what's important to the user?
- Correctness: Will it give me the right answer?
- Runtime: How long will it take to run?
- "Runtime" can be measured using the following:
- Human Time (e.g. seconds)
- Computer Time (e.g. clock cycles)

Runtime is Implementation-Dependent

- An "algorithm" is a mathematical entity

Runtime is Implementation-Dependent

- An "algorithm" is a mathematical entity
- A "program" is just an implementation of an algorithm

Runtime is Implementation-Dependent

- An "algorithm" is a mathematical entity
- A "program" is just an implementation of an algorithm
- "Runtime" measures a program, not an algorithm

Runtime is Implementation-Dependent

- An "algorithm" is a mathematical entity
- A "program" is just an implementation of an algorithm
- "Runtime" measures a program, not an algorithm
- The same program run on newer hardware can run faster

Runtime is Implementation-Dependent

- An "algorithm" is a mathematical entity
- A "program" is just an implementation of an algorithm
- "Runtime" measures a program, not an algorithm
- The same program run on newer hardware can run faster
- Thus, "runtime" may not be the best way to describe an algorithm

Runtime is Implementation-Dependent

- An "algorithm" is a mathematical entity
- A "program" is just an implementation of an algorithm
- "Runtime" measures a program, not an algorithm
- The same program run on newer hardware can run faster
- Thus, "runtime" may not be the best way to describe an algorithm
- Can we describe an algorithm independently of implementation?

Time Complexity

- We can use "time complexity" to directly describe an algorithm

Time Complexity

- We can use "time complexity" to directly describe an algorithm
- Time complexity describes how an algorithm scales

Time Complexity

- We can use "time complexity" to directly describe an algorithm
- Time complexity describes how an algorithm scales
- It describes the number of operations performed by an algorithm

Time Complexity

- We can use "time complexity" to directly describe an algorithm
- Time complexity describes how an algorithm scales
- It describes the number of operations performed by an algorithm
- But with what input data?

The Best, the Worst, and the Average

- To describe an algorithm, we need to think of the input "case"

The Best, the Worst, and the Average

- To describe an algorithm, we need to think of the input "case"
- The best case is the best possible scenario for the algorithm

The Best, the Worst, and the Average

- To describe an algorithm, we need to think of the input "case"
- The best case is the best possible scenario for the algorithm
- The worst case is the worst possible scenario for the algorithm

The Best, the Worst, and the Average

- To describe an algorithm, we need to think of the input "case"
- The best case is the best possible scenario for the algorithm
- The worst case is the worst possible scenario for the algorithm
- The average case is the theoretical expectation

The Best, the Worst, and the Average

- To describe an algorithm, we need to think of the input "case"
- The best case is the best possible scenario for the algorithm
- The worst case is the worst possible scenario for the algorithm
- The average case is the theoretical expectation
- People typically mainly care about the worst case

The Best, the Worst, and the Average

- To describe an algorithm, we need to think of the input "case"
- The best case is the best possible scenario for the algorithm
- The worst case is the worst possible scenario for the algorithm
- The average case is the theoretical expectation
- People typically mainly care about the worst case
- "Your package will arrive in around 1 to 100 days"

Big-O, Big- Ω, and Big- Θ

- We first need to pick a case (worst, best, or average)

Big-O, Big- Ω, and Big- Θ

- We first need to pick a case (worst, best, or average)
- What do we do next to describe how our algorithm scales?

Big-O, Big- Ω, and Big- Θ

- We first need to pick a case (worst, best, or average)
- What do we do next to describe how our algorithm scales?
- We can describe the number of operations our algorithm performs

Big-O, Big- Ω, and Big- Θ

- We first need to pick a case (worst, best, or average)
- What do we do next to describe how our algorithm scales?
- We can describe the number of operations our algorithm performs
- Big-O: A function that is an upper bound on the number of operations

Big-O, Big- Ω, and Big- Θ

- We first need to pick a case (worst, best, or average)
- What do we do next to describe how our algorithm scales?
- We can describe the number of operations our algorithm performs
- Big-O: A function that is an upper bound on the number of operations
- Big- Ω : A function that is a lower bound on the number of operations

Big-O, Big- Ω, and Big- Θ

- We first need to pick a case (worst, best, or average)
- What do we do next to describe how our algorithm scales?
- We can describe the number of operations our algorithm performs
- Big-O: A function that is an upper bound on the number of operations
- Big- Ω : A function that is a lower bound on the number of operations
- Big-Ө: A function that is both an upper and lower bound

Big-O, Big- Ω, and Big- Θ

- We first need to pick a case (worst, best, or average)
- What do we do next to describe how our algorithm scales?
- We can describe the number of operations our algorithm performs
- Big-O: A function that is an upper bound on the number of operations
- Big- Ω : A function that is a lower bound on the number of operations
- Big-Ө: A function that is both an upper and lower bound

Example: Big-O, Big- Ω, and Big- Θ

- Number of Operations $=f(n)=2 n^{2}+3 n+1$

Example: Big-O, Big- Ω, and Big- Θ

- Number of Operations $=f(n)=2 n^{2}+3 n+1$

Ex

$f(n)$ is $\mathrm{O}\left(n^{2}\right)$

- Number of Operations $=f(n)=2 n^{2}+3 n+1$

Example: Big-O, Big- Ω, and Big- Θ

- Number of Operations $=f(n)=2 n^{2}+3 n+1$

Ex

$f(n)$ is $\Omega\left(n^{2}\right)$

- Number of Operations $=f(n)=2 n^{2}+3 n+1$

Example: Big-O, Big- Ω, and Big- Θ

- Number of Operations $=f(n)=2 n^{2}+3 n+1$

$$
\begin{aligned}
& f(n) \text { is both } O\left(n^{2}\right) \text { and } \Omega\left(n^{2}\right) \\
& \text { therefore... } \\
& f(n) \text { is } \Theta\left(n^{2}\right)
\end{aligned}
$$

Finding the Big-O Time Complexity

- Imagine we have a function $f(n)$ denoting the number of operations

Finding the Big-O Time Complexity

- Imagine we have a function $f(n)$ denoting the number of operations
- First, drop all lower terms of n in the addition

Finding the Big-O Time Complexity

- Imagine we have a function $f(n)$ denoting the number of operations
- First, drop all lower terms of n in the addition
- Second, drop all constant coefficients

Finding the Big-O Time Complexity

- Imagine we have a function $f(n)$ denoting the number of operations
- First, drop all lower terms of n in the addition
- Second, drop all constant coefficients
- Example: $f(n)=5 n \log n+2 n+27$

Finding the Big-O Time Complexity

- Imagine we have a function $f(n)$ denoting the number of operations
- First, drop all lower terms of n in the addition
- Second, drop all constant coefficients
- Example: $f(n)=5 n \log n+2 n+27$
- $5 n \log n+2 n+27 \rightarrow 5 n \log n$

Finding the Big-O Time Complexity

- Imagine we have a function $f(n)$ denoting the number of operations
- First, drop all lower terms of n in the addition
- Second, drop all constant coefficients
- Example: $f(n)=5 n \log n+2 n+27$
- $5 n \log n+2 n+27 \rightarrow 5 n \log n$
- $5 n \log n \rightarrow n \log n \rightarrow \mathbf{O}(n \log n)$

Selection Sort

Selection Sort

```
Algorithm selection_sort(X):
    output \leftarrow empty list
    Repeat |X| times:
    y \leftarrow smallest item in X
    Remove y from X
    Add y to output
    Return output
```


Selection Sort

7	25	0	42	-9

Selection Sort

7	25	0	42	-9

Selection Sort

7	25	0	42	-9

Selection Sort

Selection Sort

7	25	0	42	-9

Selection Sort

Selection Sort (In-Place)

7	25	0	42	-9

Selection Sort (In-Place)

Selection Sort (In-Place)

-9
 0
 25
 42

Selection Sort (In-Place)

Selection Sort: Worst-Case Time Complexity

Selection Sort: Worst-Case Time Complexity

- For each of our n iterations:

Selection Sort: Worst-Case Time Complexity

- For each of our n iterations:
- Find the smallest remaining item

Selection Sort: Worst-Case Time Complexity

- For each of our n iterations:
- Find the smallest remaining item

■ In the i-th iteration (0-based counting), we check $n-i$ items

Selection Sort: Worst-Case Time Complexity

- For each of our n iterations:
- Find the smallest remaining item

■ In the i-th iteration (0-based counting), we check n - i items

- Total number of operations $=n+(n-1)+(n-2)+\ldots+3+2+1$

Selection Sort: Worst-Case Time Complexity

- For each of our n iterations:
- Find the smallest remaining item

■ In the i-th iteration (0-based counting), we check $n-i$ items

- Total number of operations $=n+(n-1)+(n-2)+\ldots+3+2+1$
- This is the sum of the integers from 1 to n, which is $n(n+1) / 2$

Selection Sort: Worst-Case Time Complexity

- For each of our n iterations:
- Find the smallest remaining item

■ In the i-th iteration (0-based counting), we check $n-i$ items

- Total number of operations $=n+(n-1)+(n-2)+\ldots+3+2+1$
- This is the sum of the integers from 1 to n, which is $n(n+1) / 2$
- $n(n+1) / 2=n^{2}+n \rightarrow \mathbf{O}\left(n^{2}\right)$

Selection Sort: Worst-Case Time Complexity

- For each of our n iterations:
- Find the smallest remaining item

Can we do better?

- Total number of operations $=n+(n-1)+(n-2)+\ldots+3+2+1$
- This is the sum of the integers from 1 to n, which is $n(n+1) / 2$
- $n(n+1) / 2=n^{2}+n \rightarrow \mathbf{O}\left(n^{2}\right)$

Merge Sort

Merge Sort

Algorithm merge_sort(X):
If $|X|$ only has 1 item:
Return $\mid \mathbf{X |}$
left \leftarrow merge_sort(left half of X)
right \leftarrow merge_sort (right half of X)
Return the result of merging left and right

Merge Sort

-9	0	7	25	42	5	-2	12

Merge Sort

| -9 | 0 | 7 | 25 | 42 | 5 | -2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |12

Merge Sort

What type of algorithm is this?

Merging Two Sorted Lists

```
Algorithm merge(X,Y):
    output \leftarrow empty list; i,j \leftarrow 0
    While i < |X| and j < |Y|:
    If X[i] < Y[j]:
    Add X[i] to output and increment i
        Else:
            Add Y[j] to output and increment j
    Add remaining items to output
    Return output
```


Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

Merging Two Sorted Lists

Merge Sort: Worst-Case Time Complexity

Merge Sort: Worst-Case Time Complexity

- For each of our $\log _{2} n$ levels of merging:

Merge Sort: Worst-Case Time Complexity

- For each of our $\log _{2} n$ levels of merging:
- Merge pairs of sorted lists (n items total)

Merge Sort: Worst-Case Time Complexity

- For each of our $\log _{2} n$ levels of merging:
- Merge pairs of sorted lists (n items total)

■ In each level of merging, each item is checked only once

Merge Sort: Worst-Case Time Complexity

- For each of our $\log _{2} n$ levels of merging:
- Merge pairs of sorted lists (n items total)

■ In each level of merging, each item is checked only once

- Total number of operations $=n+n+\ldots+n$ (once per row of merging)

Merge Sort: Worst-Case Time Complexity

- For each of our $\log _{2} n$ levels of merging:
- Merge pairs of sorted lists (n items total)

■ In each level of merging, each item is checked only once

- Total number of operations $=n+n+\ldots+n$ (once per row of merging)
- We have $\log _{2} n$ rows of merging, so $n \log _{2} n$ total, $\times 2$ for dividing

Merge Sort: Worst-Case Time Complexity

- For each of our $\log _{2} n$ levels of merging:
- Merge pairs of sorted lists (n items total)

■ In each level of merging, each item is checked only once

- Total number of operations $=n+n+\ldots+n$ (once per row of merging)
- We have $\log _{2} n$ rows of merging, so $n \log _{2} n$ total, $\times 2$ for dividing
- $2 n \log _{2} n \rightarrow O(n \log n)$

Merge Sort: Worst-Case Time Complexity

- For each of our $\log _{2} n$ levels of merging:
- Merge pairs of sorted lists (n items total)

Can we do better?

- Total number of operations $=n+n+\ldots+n$ (once per row of merging)
- We have $\log _{2} n$ rows of merging, so $n \log _{2} n$ total, $\times 2$ for dividing
- $2 n \log _{2} n \rightarrow O(n \log n)$

Merge Sort: Worst-Case Time Complexity

- For each of our $\log _{2} n$ levels of merging:

Probably not!

 Cal vve uo oenter!- Total number of operations $=n+n+\ldots+n$ (once per row of merging)
- We have $\log _{2} n$ rows of merging, so $n \log _{2} n$ total, $\times 2$ for dividing
- $2 n \log _{2} n \rightarrow O(n \log n)$

