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Introduction to Sorting

e Many algorithms require the input data to be sorted

e Computational Problem: Given n “comparable” items, order them
such that the i-th element is less than or equal to the (i+1)-th element
o This is for sorting in ascending order

o Just change “less than” to “greater than” for descending order
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Introduction to Sorting
e How do we sort n items?

e No, not just clicking a button...

:~$ python3
Python 3 6 8 (default Jan 14 2019, 11:02:34)
[GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>> numbers = [93,68,14,0,22,20,20,46,59,35,36,93,68,79,4,55,15]
>>> numbers.sort()
>>> print(numbers)

[ R 4014 15 RO IQ 0835 36 846 55850 N6 TN 68 797803 Sia 3 |
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Introduction to Sorting

e How do we sort n items?

e No, not just clicking a button...

e No, what’s actually happening behind the scenes?
® Let’s discuss some sorting algorithms!

e But first, let’s discuss time complexity using Big-O notation



Time Complexity
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Describing an Algorithm

e Algorithms can be complicated, but what’s important to the user?
o Correctness: Will it give me the right answer?
© Runtime: How long will it take to run?

e “Runtime” can be measured using the following:
o Human Time (e.g. seconds)

o Computer Time (e.g. clock cycles)
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Runtime is Implementation-Dependent
e An “algorithm” is a mathematical entity
o A “program” is just an implementation of an algorithm
e “Runtime” measures a program, not an algorithm
o The same program run on newer hardware can run faster
o Thus, “runtime” may not be the best way to describe an algorithm

o Can we describe an algorithm independently of implementation?
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Time Complexity
e We can use “time complexity” to directly describe an algorithm
e Time complexity describes how an algorithm scales
o It describes the number of operations performed by an algorithm

o But with what input data?



The Best, the Worst, and the Average

e To describe an algorithm, we need to think of the input “case”



The Best, the Worst, and the Average
e To describe an algorithm, we need to think of the input “case”

o The best case is the best possible scenario for the algorithm



The Best, the Worst, and the Average
e To describe an algorithm, we need to think of the input “case”
o The best case is the best possible scenario for the algorithm

o The worst case is the worst possible scenario for the algorithm



The Best, the Worst, and the Average
e To describe an algorithm, we need to think of the input “case”
o The best case is the best possible scenario for the algorithm
o The worst case is the worst possible scenario for the algorithm

o The average case is the theoretical expectation



The Best, the Worst, and the Average

e To describe an algorithm, we need to think of the input “case”
o The best case is the best possible scenario for the algorithm
o The worst case is the worst possible scenario for the algorithm
o The average case is the theoretical expectation

e People typically mainly care about the worst case



The Best, the Worst, and the Average

e To describe an algorithm, we need to think of the input “case”
o The best case is the best possible scenario for the algorithm
o The worst case is the worst possible scenario for the algorithm
o The average case is the theoretical expectation

e People typically mainly care about the worst case

o  “Your package will arrive in around 1to 100 days”
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e Number of Operations =fln)=2n?+3n +1

A

g(n) = 3n? f(n) =2n%+3n + 1
h(n) = n?
>
n



Example: Big-O, Big-Q, and Big-©

e Number of Operations =fln)=2n?+3n +1

fin) is both O(n?) and Q(n?)
therefore...
fin) is ©(n?)




Finding the Big-O Time Complexity

e Imagine we have a function f({n) denoting the number of operations



Finding the Big-O Time Complexity
e Imagine we have a function f({n) denoting the number of operations

o First, drop all lower terms of n in the addition



Finding the Big-O Time Complexity
e |magine we have a function f(n) denoting the number of operations
o First, drop all lower terms of n in the addition

o Second, drop all constant coefficients



Finding the Big-O Time Complexity

e Imagine we have a function f({n) denoting the number of operations
o First, drop all lower terms of n in the addition
o Second, drop all constant coefficients

e Example: fln)=5nlog n+ 2n + 27



Finding the Big-O Time Complexity

e Imagine we have a function f({n) denoting the number of operations
o First, drop all lower terms of n in the addition
o Second, drop all constant coefficients

e Example: fln)=5nlog n+ 2n + 27

o bnlogn+2r+24=>5nlogn



Finding the Big-O Time Complexity

e Imagine we have a function f({n) denoting the number of operations
o First, drop all lower terms of n in the addition
o Second, drop all constant coefficients

e Example: fln)=5nlog n+ 2n + 27
o bnlogn+2r+24=>5nlogn

o 5Snlogn=nlogn=0(nlogn)
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Selection Sort

Algorithm selection_sort(X):
output «— empty list
Repeat |X| times:
y «— smallest item in X
Remove y from X
Add y to output

Return output
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Selection Sort (In-Place)

What type of algorithm is this?
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Selection Sort: Worst-Case Time Complexity
e [or each of our n iterations:

o Find the smallest remaining item

Can we do better?

otal number of operations =n
o This is the sum of the integers from 1to n, which is n(n+1)/2

o n(n+1)/2 =n?+ n =+ 0(n?
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Merge Sort

Algorithm merge_sort(X):
If |X| only has 1 item:
Return |X|
left «— merge_sort(left half of X)
right «— merge_sort(right half of X)

Return the result of merging left and right
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Merge Sort

9 0 7 25142 5 -2 |12
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)& O Ao
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T~~~
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Merging Two Sorted Lists

Algorithm merge(X,Y):
output «— empty list; i,j <« ©
While i < |X| and j < |Y]:
If X[1i] < Y[]]:
Add X[i] to output and increment i
Else:
Add Y[j] to output and increment j
Add remaining items to output

Return output
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o Merge pairs of sorted lists (n items total)

Can we do better?

otal'number of operations=n+n n(once perrow of merging
o We have log,n rows of merging, so n log,n total, x2 for dividing

o 2nlog,n = O(n log n)




Merge Sort: Worst-Case Time Complexity

e For each of our log,n levels of merging:

Probably not!

otal'number of operations=n+n n(once perrow of merging
o We have log,n rows of merging, so n log,n total, x2 for dividing

o 2nlog,n = O(n log n)



